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H I G H L I G H T S  

• Advanced spatial allocation in MEIAT-CMAQ enhances transportation emissions accuracy. 
• MEIAT-CMAQ improves air quality model precision for O3, NO2, CO, and PM2.5. 
• The vertical allocation in emission inventories can enhance the accuracy of simulations.  
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A B S T R A C T   

The Modular Emission Inventory Allocation Tool for Community Multiscale Air Quality Model (MEIAT-CMAQ) 
refines emission inventories by providing detailed spatial (horizontal and vertical), temporal, and species allo
cations, enhancing the accuracy of CMAQ performance. Its efficient algorithm and modular design offer flexi
bility for managing both gridded and tabulated inventories, widely used in various sectors. In addition, the 
shapefiles with specific shapes supported by MEIAT-CMAQ can address the allocation challenges in trans
portation emissions. The evaluation of MEIAT-CMAQ, using model-ready inventories before (BASE scenario), and 
after allocation without (EXPR scenario) or with (EXPR-V scenario) vertical allocation, demonstrates significant 
improvements in the mean bias (MB) of gaseous pollutants (O₃, NO₂, CO). In both the EXPR and EXPR-V sce
narios, the MB for O3 exhibits notable enhancements, with respective improvements of 5.7% and 26.9%. For 
NO₂, corresponding MB improvements are even more pronounced, reaching 27.6% and 61.7% in the EXPR and 
EXPR-V scenarios, respectively. Likewise, enhancements are observed in the MBs of CO, demonstrating increases 
of 8.4% and 45.2% in the EXPR and EXPR-V scenarios, respectively. Moreover, with regard to spatial accuracy, 
the incorporation of the MEIAT-CMAQ model yields significant improvements. Specifically, in the EXPR sce
narios, spatial accuracy for O3 and NO2 demonstrates respective enhancements of 13.5% and 9.5%. Furthermore, 
the inclusion of vertical allocation leads to additional enhancements in CO, NO₂, and PM2.5, resulting in im
provements of 17.6%, 16.6%, and 23.2%, respectively. MEIAT-CMAQ provides an efficient method for trans
forming coarse-resolution emission inventories into high-resolution files directly useable in the model, offering 
enhanced flexibility for users to select any period for generating model-ready emission files. This capability 
provides substantial technical support for automating processes within business departments and significantly 
improves the performance of high-resolution modeling and forecasting.  
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1. Introduction 

High-resolution emission inventories of air pollutants are essential 
for formulating effective atmospheric environmental mitigation strate
gies (Lu et al., 2023; Qiu et al., 2023; Wang et al., 2022), improving 
ambient air quality forecasts (Wu et al., 2014), and promoting air 
pollution research (Wang et al., 2021; Yang et al., 2020). Determining 
pollutant concentrations necessitates employing an air quality model 
(AQM) (Liu and Wang, 2020a, 2020b), such as the Weather Research 
and Forecast (WRF)–Community Multiscale Air Quality (CMAQ) model. 
For an effective analysis of regional air quality using regional numerical 
models like WRF-CMAQ, emission inventories with a 1–5 km resolution 
are required. For instance, the Multi-resolution Emission Inventory for 
China (MEIC, http://meicmodel.org.cn, last accessed: May 7, 2023), 
which adopts a ‘bottom-up’ methodology, offers a resolution of 0.25◦ (Li 
et al., 2017; Zheng et al., 2018), while satellite-derived NOx emissions, 
developed via a ‘top-down’ approach, have a resolution of 9 km (Yang 
et al., 2021). 

Moreover, due to limitations in observational methods and economic 
constraints, emission inventory production typically focuses on monthly 
or annual scales for conventional species such as NOx, NH3, SO2, VOC, 
PM2.5, and PM10 (McDuffie et al., 2020; Veldeman et al., 2014). Yet, 
AQM demands hourly scale inventory emissions with more detailed 
species descriptions based on chemical mechanisms, such as the 
Carbon-Bond VI (CB06) (Luecken et al., 2019) and the chemical mech
anism of Statewide Air Pollution Research Center (SAPRC07) (Hutzell 
et al., 2012; Xie et al., 2013). This discrepancy necessitates significant 
effort in adapting original emission inventories for AQM use. Conse
quently, there is a need for a tool to facilitate spatial, temporal, and 
species allocation in emission inventory processing. In detail, the spatial 
allocation usually maps original emission inventories to the AQM 
domain based on spatial surrogates (Zheng et al., 2021; Zhou et al., 
2017), and hourly emissions can be determined through temporal 
allocation, which involves analyzing temporal profiles such as monthly 
production statistics, heating degree days, and variations in traffic ac
tivity (Wang et al., 2021). Speciated emissions for specific mechanisms, 
such as CB06 or SAPRC07, are generated through chemical speciation. 
This process utilizes speciation profiles to determine the composition of 
organic gases and particulate matter in different sectors (Huang et al., 
2015). 

Spatial allocation is a critical component in the downscaling of 
original emission inventories, given that temporal and species alloca
tions are typically reliant on established profiles. This component, 
spatial allocation, involves employing a spatial surrogate to distribute a 
proportion of total national and regional emissions across a specified 
grid, with values ranging from 0 to 1, as noted by Eyth and Habisak 
(2003). To reflect the true intensity of activities, proxies such as popu
lation density, land use, and road maps have been crafted as spatial 
surrogates in diverse sectors including residential, agriculture, and 
transportation (Lin et al., 2022). Commonly, the “nearest” approach is 
employed for downscaling, which entails selecting the emission value 
closest to the desired grid, according to Lin et al. (2022). Nevertheless, 
this technique may exacerbate emission discrepancies due to a lack of 
consideration for potential projection variances between the AQM and 
emission inventories, which may arise from alterations within the 
research domain. Recognizing these challenges, some studies have been 
motivated to devise more accurate tools and methodologies. For 
example, the Traffic Emission Modelling and Mapping Suite (TEMMS) 
introduces an ‘intersect’ method to mitigate this issue, it is limited to 
managing only the transportation emissions (Namdeo et al., 2002). 
Conversely, the tool for Hourly Specification of core inventory of air 
annual emissions (THOSCANE) is capable of processing emissions from 
various sectors; however, it falls short in generating model-ready 
emission inventories for AQM (Monforti and Pederzoli, 2005). 
Recently, the advancement of the Inventory Spatial Allocation Tool 
(ISATv2.0) has shown promising results in facilitating the processing of 

emission inventories for WRF-AQM by allowing the definition of WRF 
nested domains and the generation of model-ready emission inventories 
(Wang et al., 2023). Despite this, the “sub-grid” method in ISATv2.0 
supports only spatial surrogates in a grid format, which may not be fully 
suitable for specific transportation sectors. 

In this study, the Modular Emission Inventory Allocation Tool for 
CMAQ (MEIAT-CMAQ) was developed to downscale original emission 
inventories from various formats to CMAQ model-ready emission in
ventories in a user-friendly and modular way. MEIAT-CMAQ uses the 
“intersect” method to complete spatial allocation with ArcGIS ports, 
which allows for parallel processing on computers and improves pro
gram efficiency. Furthermore, MEIAT-CMAQ includes a component to 
enable users to allocate emissions vertically for original emission in
ventories that only cover one layer. This enhancement enables a more 
accurate representation of upper atmospheric emissions, including those 
from aviation and a portion of power emissions. Additionally, this tool 
benefits from modularity, which allows it to be flexible to process not 
only original emission inventories in grid but also in tabulation. More
over, the original emission inventories in a tabular format that are 
organized in terms of administrative districts for total emissions usually 
come from business units using a “bottom-up” approach. However, the 
tools that have been developed in the past are typically only applicable 
to gridded original emission inventories, which is a major constraint for 
business development. The architecture of MEIAT-CMAQ has been 
revamped to enhance efficiency and accuracy in assigning original 
emission inventories. As a result, it can now adapt to various formats of 
original emission inventories, making it an ideal tool for CMAQ users in 
both research and business developments. 

This paper provides a detailed overview of the algorithmic principles 
underlying the MEIAT-CMAQ and demonstrates its applicability 
through simulations with the WRF-CMAQ model. Apart from the 
introduction in Section 1, we offer an in-depth introduction to the 
workflow and algorithmic principles underlying MEIAT-CMAQ in Sec
tion 2. Section 3 shows the evaluation of various emission inventories 
from different allocation methods, and Section 4 presents our conclu
sions. Additionally, a step-by-step manual for MEIAT-CMAQ has been 
furnished in the appendix. 

2. Model structure 

MEIAT-CMAQ has been specifically designed for the Windows 
operating system and is developed using Python 3 and GIS (Geographic 
Information System) interfaces. To optimize processing efficiency, the 
tool is configured to utilize 50% of the CPU (Central Processing Unit) by 
default, enabling parallel processing of the entire allocation process. 
Fig. 1 provides an overview of MEIAT-CMAQ, which consists of three 
main parts that transform the original emissions inventories into model- 
ready emission inventories. 

Part 1 serves as a pre-processing module that includes components 
enabling the conversion of annual-scale original emission inventories 
into monthly-scale emission inventories based on monthly profiles. 
Additionally, the pre-processing module features scripts for processing 
commonly used emission inventories into GeoTIFF format, as is required 
by MEIAT-CMAQ. This format, which straightforwardly describes 
spatial data, must adhere to the World Geodetic System 1984 (WGS- 
1984) projection with longitude and latitude dimensions (https://gisgeo 
graphy.com/wgs84-world-geodetic-system/, last access: May 22, 2024). 
Emission values within these GeoTIFF files should be expressed in 
Million grams (Mg)/year or Mg/month. Notably, most open-source 
emission inventories, such as the Emissions Database for Global Atmo
spheric Research (EDGAR) and the Community Emissions Data System 
(CEDS), already use WGS-1984 projections, facilitating easy conversion 
to the required MEIAT-CMAQ format. Although units may vary across 
inventories, they can all be standardized to Mg/year or Mg/month with 
minimal effort. 

Part 2 comprises two scripts which encompass spatial allocation, 
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temporal allocation, and species allocation. The first script, ‘coarse_e
mission_2_fine_emission.py,’ performs spatial allocation by converting 
coarse-resolution emission inventories (i.e., the resolution of original 
emission inventories) to fine-resolution emission inventories (i.e., the 
resolution of the AQM domain) using spatial surrogates. The second 
script, ‘Create-CMAQ-Emission-File.py’, handles temporal and species 
allocation, converting the assigned results from the first script into 
model-ready emission inventories. The temporal allocation process 
supports only monthly scale emission inventories and assumes that there 
are four weeks in a month with emissions remaining constant across 
each week and the module can be modified to account for weekly and 
diurnal variations in weekly and hourly profiles, facilitating allocation 
of monthly emissions to hourly emissions. 

Part 3 is an optional component that handles vertical allocation. This 
part is omitted for emissions occurring solely near the surface, while it is 
essential for sectors where emissions may occur at aloft. 

The assignment of spatial, temporal, and species components con
stitutes the fundamental technological foundation of the MEIAT-CMAQ 
tool. This section is devoted to an in-depth examination of these three 
critical areas. Meanwhile, the approach for vertical allocation will be 
comprehensively elucidated in Section 2.3. 

2.1. Spatial allocation 

Spatial allocation constitutes a critical component of MEIAT-CMAQ, 
with temporal and species allocation relying on its output for subsequent 
processing. Fig. 2 displays a conceptual representation of spatial allo
cation, which aims to transform emissions from the original emission 
inventory resolution (coarse resolution) to the CMAQ domain resolution 
(fine resolution) using user-specified spatial surrogates that react to the 
real intensity of the activity map of the specified sectors. For instance, in 
Fig. 2, a coarse emission grid with a value of 40 Mg is converted into a 3 
× 3 grid configuration (i.e., the spatial allocation process). Spatial 

surrogates are then employed to represent the intensity of activity 
within the coarse grid at a finer resolution, ultimately enabling the 
calculation of fine grid emissions (Eq. (1)). 

Efine =Ecoarse ×
ssfine

sscoarse
(1)  

In Eq. (1), Efine is the fine grid (i.e., CMAQ simulation grid) emission in 
Mg, Ecoarse denotes the coarse grid (i.e., original emission inventory grid 
or administrative area) emission in Mg, ssfine corresponds to the value of 
the spatial surrogate grid associated with the fine grid, and sscoarse is the 
sum value of the spatial surrogate grid within the coarse grid range. 
Thus, the sum value of ssfine/sscoarse within the same coarse grid equals 1, 
allowing the coarse grid to be considered as a computational cell. 

Fig. 3 elucidates the process of spatial distribution within MEIAT- 
CMAQ, exhibiting the constituents of this allocation, which encompass 
modules such as “create fine grid”, “fine grid information”, “calculate 
allocation factor”, “calculate coarse grid emission”, and “calculating fine 
grid emissions”. The GRIDDESC file used in the “create fine grid” 
module, an output from the Meteorology-Chemistry Interface Processor 
(MCIP) which can provide the CMAQ domain projection and grid 
configuration, is employed in the fabrication of a shapefile delineating 
the simulation grid, which will be used for calculating ssfine in Eq. (1). 
Each fine grid should be associated with a distinct coarse grid because of 
the requirement of MEIAT-CMAQ to ensure that the sum value of 
ssfine/sscoarse within the same coarse grid equals 1; thus, the “fine grid 
information” module in MEIAT-CMAQ is developed for addressing this 
problem. Furthermore, spatial surrogates in raster or line shapefile 
format are used in the calculation of allocation factors in the “calculate 
allocation factor” module and the previous tools cannot support spatial 
surrogates in line shapefile format (Namdeo et al., 2002; Wang et al., 
2023). The original emission inventories with coarse resolution are 
segregated and quantified by a coarse grid in shapefile format via the 

Fig. 1. Operational workflow for MEIAT-CMAQ.  
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“calculate coarse grid emission” module, and the final refined grid 
emission is eventually calculated by the allocation factor and coarse grid 
emission via the “calculating fine grid emissions” module. We will 
provide a comprehensive explanation of the calculation and framing of 
each module in the following subsections. 

2.1.1. Create fine grid 
The “create fine grid” module is designed to transform the CMAQ 

simulation domain into a shapefile based on the GRIDDESC file with 
Lambert Conformal Conic (LCC) projection, a projection utilized in 

regional numerical models, including WRF and CMAQ. This shapefile 
fundamentally comprises multiple small rectangles, with each repre
senting a grid within the CMAQ simulation domain. To locate each small 
rectangle, four points are required, which can be computed using Eqs. 
(2)–(5). The points correspond to the left bottom position 

(
xmin, ymin

)
, 

the right bottom position 
(
xmax,ymin

)
, the left upper position 

(
xmin,ymax

)
, 

and the right upper position 
(
xmax, ymax

)
. Additionally, xorg and yorg 

represent the coordinates in the horizontal and vertical directions, 
respectively, while dx and dy denote the resolutions in these respective 
directions. Additionally, the column and row numbers are represented 

Fig. 2. Conceptual representation of spatial allocation.  

Fig. 3. Operational workflow for spatial allocation in MEIAT-CMAQ.  
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by i and j (start counting from zero), respectively. The aforementioned 
projection parameter and total number of columns and rows in the grid 
can be located in the GRIDDESC file. 

xmin = xorg + dx × i (2)  

xmax = xorg + dx × (i + 1) (3)  

ymin = yorg + dy × j (4)  

ymax = yorg + dy × (j + 1) (5)  

2.1.2. Fine grid information 
Fig. 4 (a) depicts that gridded emission inventories often face chal

lenges in precisely aligning with multiple fine grids due to variations in 
coordinate systems. Additionally, the borough boundaries of some 
tabulated emission inventories might exhibit irregular shapes, which 
cannot seamlessly overlap the fine grids. These circumstances can result 
in the smaller grid being divided into one or more sub-grids along the 
boundary of the coarse grid. Consequently, reasonably addressing these 
split sub-grids becomes the primary challenge for MEIAT-CMAQ. 

Fig. 4 (b) presents a conceptual illustration of the “fine grid infor
mation” module, demonstrating how the coarse grid subdivides the fine 
grid. As shown in Fig. 4 (b), the fine grid is partitioned into four sub- 
grids (F1–F4), each belonging to distinct coarse grids (C1–C4). The 
primary objective of the “fine grid information” module is to identify the 
sub-grid with the largest area and determine the corresponding coarse 
grid as the current attribution for the fine grid. Compared to other 
emission inventory process tools, this approach from MEIAT-CMAQ 
addresses the issue of insufficient accuracy in pinpointing grid infor
mation and accelerates computation through the implementation of 
parallel computing techniques. 

2.1.3. Calculate allocation factor 
The allocation factor is a critical parameter for spatial allocation, and 

the “calculate allocation factor” module employs high-resolution spatial 
surrogates to represent the intensity of activity in each sector. Notably, 
this module supports both raster and line shapefile formats as spatial 
surrogates, with the inclusion of line shapefiles marking a significant 
breakthrough in transportation sector allocation. Furthermore, the 
“calculate allocation factor” module integrates the output file containing 
fine grid information about coarse grid labels from the “fine grid in
formation” module to compute sscoarse and ssfine. 

Spatial surrogates in raster format exhibit distinct boundaries, which 

can divide coarse or fine grids. Consequently, the “calculate allocation 
factor” module employs the “nearest” method for these values. Eq. (6) 
illustrates the calculation of the allocation factor, where vfine represents 
the sum value within the fine grid and vcoarse denotes the sum value 
within the coarse grid. 

Afine =
Vfine

Vcoarse
(6) 

Line shapefile format spatial surrogates commonly represent roads, 
aircraft flight paths, and shipping channels, acting as essential indicators 
of activity intensity within the transportation sector. Nevertheless, 
existing inventory assignment tools typically handle roads by converting 
them into raster format to serve as spatial surrogates. However, due to 
the significant computational costs and format limitations associated 
with spatial surrogates, these road-based raster often lack sufficient 
resolution, resulting in distortions in the final emissions within the fine 
grid. 

Fig. 5 displays the fine grid NOx emissions for the transportation 
sector in January, allocated from the 2017 Multiscale Emissions In
ventory of China (MEIC) developed by Tsinghua University, using both a 
3 km resolution road raster and line shapefile spatial surrogates. The 3 
km road raster in Fig. 5 (a) is converted from the four roads with various 
levels (i.e. motorway, primary road, secondary road, and residential 
road) from Open Street Map (https://www.openstreetmap. 
org/#map=6/54.910/-3.432, last accessed: January 11, 2024) depic
ted in Fig. 5 (b), with values in the raster representing the sum of the four 
levels road lengths, each multiplied by their respective coefficients 
indicating activity intensity. Fig. 5 (c) reveals that the fine grid emis
sions allocated by raster spatial surrogates exhibit pronounced striping 
patterns due to the low resolution of the road raster. When the resolution 
of spatial surrogates is close to the fine grids, there is competition in the 
fine grids because the spatial surrogates do not have enough values for 
each fine grid, leading to some grids not having values. In contrast, Fig. 5 
(d) demonstrates that employing line shapefile spatial surrogates 
effectively addresses this issue. 

Calculating the allocation factor for line shapefile spatial surrogates 
is similar to that for raster spatial surrogates. The length in the coarse 
grid is treated as Vcoarse and the length in the fine grid as Vfine. The 
allocation factor (Afine) is computed following Eq. (6). As most spatial 
surrogates for the transportation sector are provided in the form of one 
or more-line shapefiles, converting these line shapefiles into raster 
format with a specific factor is highly computationally intensive. 
MEIAT-CMAQ enables users to input an unlimited number of shapefile 

Fig. 4. Conceptual illustration of the “Fine Grid Information” module. In panel (a), red grids represent coarse grids, while black grids denote fine grids. C1–C4 serve 
as labels for each coarse grid, and F1–F4 designate labels for each sub-grid originating from the fine grid. 
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files and easily specify coefficients for each line shapefile, offering a 
crucial function for allocating emission inventories in the transportation 
sector. 

2.1.4. Calculate coarse and fine grid emissions 
Based on the boundaries of each coarse grid, the sum value within 

the grid represents the coarse grid emission. Thus, the “calculate coarse 
grid emission” module functions as an independent processor, requiring 
only the input of the coarse grid in shapefile format and the original 
coarse grid emission. Additionally, users can create a fishnet shapefile as 
the coarse grid for gridded emission inventories, ensuring a complete 
overlap of the boundaries, or they can bypass this step to directly 
generate the output file of the “calculate coarse grid emission” module 
for tabulated emission inventories representing countries or cities within 
each coarse grid. The “calculate fine grid emission” module combines 
the coarse emission grid table, grid information table, and allocation 
factor table to compute fine grid emissions. 

2.2. Temporal and species allocation 

The “CMAQ emission file” module incorporates both temporal and 
species allocation, conforming to the stringent stipulations of CMAQ 
model-ready emission inventories. These specifications dictate that the 
unit for gaseous species must be reported in “mol/s" and particulate 
species in “g/s.” While annual emission inventories are more accessible 
than their monthly counterparts, the MEIAT-CMAQ model solely ac
commodates monthly-scale emission inventories across all modules due 
to the higher temporal resolution in monthly-scale emission inventories. 

To address this limitation, MEIAT-CMAQ introduces an efficient 
alternative procedure, “year2month.py”, which effectively converts 
annual emission inventories into monthly emission inventories. This 
method harnesses monthly-scale temporal profiles, enabling the use of 
transformed data within the MEIAT-CMAQ framework. The 

“year2month.py” script is governed by a monthly temporal profile 
(“monthly.csv”) found in the “temporal” folder. 

Alongside the monthly-scale temporal profile, the “CMAQ emission 
file” model also employs weekly and hourly-scale temporal profiles ar
ranged by emission sectors, resulting in a highly organized and efficient 
system. Thus, the temporal allocation process aims to assign monthly 
emissions inventories to hourly emission inventories. Nonetheless, spe
cies allocation is also necessary to fulfil the requirements of CMAQ 
emission files. Therefore, the complete calculation for both temporal 
and species allocation adheres to Eq. (7). 

E= Em,sector × Fw,sector

× Fh,sector

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

×106 ×
1

3600
× Sf (Uo = Mmol & Ut = mol/s)

×106 ×
1

3600
× Sf (Uo = Mg & Ut = g/s)

×106 ×
1

3600 × MW
× Sf (Uo = Mg & Ut = mol/s)

(7) 

In Eq. (7), E represents the final emission value within the CMAQ 
model-ready emission inventories, while Em,sector denotes the monthly 
emission for each sector. Fw,sector and Fh,sector correspond to the weekly and 
hourly temporal allocation factors for each sector, as provided by 
“weekly.csv” and “hourly.csv” files, respectively. Furthermore, Sf , MW, 
Uo, and Ut symbolize the split factor for the same species, molecular 
weight, unit of original emission inventories, and unit of CMAQ model- 
ready emission inventories, respectively. These parameters can be 
defined in the species files located within the “species” folder. 

2.3. Vertical allocation 

The input for the “vertical allocation” module is derived from the 
output file of the “CMAQ emission file” module, which has undergone 

Fig. 5. (a) Road spatial surrogate in raster format, (b) road spatial surrogate in line shapefile format, (c) NOx fine grid emissions for January using MEIAT-CMAQ 
with spatial surrogate from panel (a), and (d) same as (c) but from panel (b). 
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spatial, temporal, and species allocation. However, current model-ready 
emission inventories primarily characterize near-surface sources and are 
not yet suitable for high-altitude emissions (Zhao et al., 2022; Zheng 
et al., 2017, 2023). Consequently, accurately characterizing emissions at 
high altitudes, such as stack emissions from the industrial and power 
sectors, proves challenging. The “vertical allocation” module can utilize 
user-provided vertical profiles to complete the vertical allocation ac
cording to Eq. (8). 

Elayer = Flayer × E0 (8) 

In Eq. (8), Elayer denotes the emission value for each respective layer, 
whereas E0 signifies the emission value of the initial layer. Flayer repre
sents the vertical allocation factor provided by the vertical profile. 

3. Model evaluation 

3.1. Methods of evaluation 

The WRFv4.4.2 (Skamarock et al., 2019) and CMAQv5.4 (http 
s://zenodo.org/record/7218076, last accessed: June 3, 2023) models 
were compiled and executed on a server within a Linux environment. 
The WRFv4.4.2 model simulated meteorological conditions, with initial 
and boundary conditions obtained from the NCEP 1◦ × 1◦ Final (FNL) 
reanalysis dataset (http://dss.ucar.edu/datasets/ds083.2/, last access: 
May 22, 2024). Fig. 6 illustrates the adoption of three nested domains 
with horizontal resolutions of 27, 9, and 3 km, respectively. The 
outermost domain encompasses China and its surrounding countries, 
while the innermost domain concentrates on the Pearl River Delta 
(PRD). 

To assess the influence of the model-ready emission inventories 
allocated with the utilization of spatial surrogates (post-assignment 
emission inventories) compared to the model-ready emission in
ventories allocated without the utilization of spatial surrogates (pre- 
assignment inventories) on the performance of CMAQ simulation, a 
comprehensive study was devised. This study incorporates two distinct 
scenarios to examine their impact and the first scenario, named BASE, 
employs pre-assignment emission inventories. Conversely, the second 
scenario, known as EXPR, utilizes post-assignment emission inventories 
to quantify the influence of MEIAT-CMAQ on CMAQ performance. 
Furthermore, an additional scenario, EXPR-V, was established to eval
uate the impact of vertical allocation, which encompasses both the 

assignment processing in the EXPR scenario and the vertical allocation, 
providing insights into the effects of vertical allocation on the overall 
evaluation. Table 1 shows the details of the all-scenario configuration 
and presents that all scenarios employ the identical species 
(Tables S3–S7) (Shi et al., 2015; Yuan et al., 2010; Zeng et al., 2021) and 
temporal profiles (Tables S8–S9) (Cai et al., 2018; Zhang et al., 2018), 
which allows for the attribution of pollutant concentration disparities 
across scenarios to the distinct spatial allocation algorithms employed 
by various emissions. 

In the BASE scenario, the original emission inventories with coarse 
resolution (0.25◦) are averaged into the simulation grid with fine reso
lution (3 km), resulting in the model-ready emissions inventories with 
the simulation grid resolution. Conversely, the EXPR scenario utilizes 
population-gridded data in 2017, which can reflect the residential ac
tivity intensity, sourced from the LandScan Population Data Explorer 
(https://landscan.ornl.gov/, last accessed: May 7, 2023), to allocate 
residential sector emissions. Road data in line shapefile format, obtained 
from Open Street Map (https://www.openstreetmap.org/, last accessed: 
Jan 4, 2024), which can describe the activity intensity of transportation 
sources, is for the allocation of transportation sector emissions. In 
addition, the China Land Cover Dataset (CLCD) was used for the allo
cation of agriculture, industry, and power sectors (Yang and Huang, 
2021). Additionally, the model-ready emission inventories for the 
EXPR-V scenario are based on the model-ready emission inventories in 
the EXPR scenario, but with vertical allocation via the vertical profile 
(Table S10) (Terrenoire et al., 2015). 

All simulations were conducted for four months, specifically, 
January, April, July, and October in 2017, with each simulation period 
having ten days of spin-up. Additionally, all scenarios utilized identical 
physical parameterizations as detailed in Table S1 and Text S1, and all 
scenarios use the same original emission inventory (MEIC) and simula
tion periods; thus, the differences in surface pollutant concentrations 
from various simulations are due to the different emission allocation 

Fig. 6. Depiction of the simulation domains and observation station locations. (a) Illustrates the spatial extent of the simulation domains, and (b) highlights the 
positions of the observation stations within the simulation domains. 

Table 1 
Scenario configuration.  

Scenario Names Spatial Surrogates Vertical Profile 

BASE NO NO 
EXPR YES NO 
EXPR-V YES YES  
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methods. In addition, this study produces the surface pollutant con
centrations via WRF-CMAQ and compared to hourly ambient levels of 
air pollutants observation data from the China National Environmental 
Monitoring Centre (CNEMC), which include 56 monitoring stations and 
the locations of these stations are depicted in Fig. 6. The collected data 
undergo stringent quality control procedures and are subsequently uti
lized to evaluate the performance of the WRF-CMAQ model. Before 
evaluating the surface air pollutant concentration, we employ a range of 
metrics, such as the correlation coefficient (R, Eq. (9)), mean bias (MB, 
Eq. (10)), and normalized mean bias (NMB, Eq. (11)) for the WRF and 
CMAQ evaluation. Text S2 and Table S2 illustrate the WRF simulation 
meteorological fields can well capture the real meteorological processes; 
thus, this simulation can be used in the CMAQ model. 

R=
1
m

× Σ
m

s=1

∑n

i=1

(
Ms,i − Ms,i

)(
os,i − Os,i

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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(
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n
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1
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(
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)

∑n

i=1
Os,i

(11)  

where s and i represent the modeled (M) or observed (O) values for each 
site and each hour, respectively. Mi and O are the average of the simu

lated and observed data, respectively. n and m are the number of total 
hours in the analysis periods and air quality sites shown in Fig. 6 (B), 
respectively. 

Furthermore, to evaluate the performance of the spatial distribution 
of pollutants, we first calculate the MB of simulated pollutant concen
trations against the observations at each site (Eq. (12)), and then 
calculate the standard deviation (σ) of them (Eq. (13)). The calculation 
of σ is shown as follows. 

MBs =

∑n

i=1

(
Ms,i − Os,i

)

n
(12)  

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

s=1
(MBs − MB)2

n

√
√
√
√
√

(13)  

where MB is the average value of the MBs of all sites and the smaller the 
standard deviation, the better the performance of the simulated spatial 
distribution. 

3.2. Comparison of the pre-assessment and post-assessment emissions 

MEIAT-CMAQ supports raster and line shapefile format spatial sur
rogates to allocate original emission inventories, and the land use cover 
in raster format for agriculture and road line in shapefile format for 
transportation can be used for reflecting the allocating performance. 
Therefore, Fig. 7 illustrates the pre-assessment emissions and post- 
assessment emissions in the agriculture and transportation sectors. 
Specifically, (a)-(d) and (i)-(l) represent the pre-assessment emissions in 

Fig. 7. The emissions after spatial allocation. (a)–(d) and (i)–(l) are the emissions of the BASE scenario in the transportation and agriculture sectors, respectively. (e)– 
(h) and (m)–(p) are the emissions of EXPR scenario in transportation and agriculture, respectively. The pollutants of the transportation and agriculture sectors are 
NO2 and NH3. 
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the transportation and agriculture sectors, respectively, for the BASE 
scenario. On the other hand, (e)-(h) and (m)-(p) depict the post- 
assessment emissions in the transportation and agriculture sectors, 
respectively, for the EXPR scenario. Notably, the transportation sector is 
associated with the pollutant NO2 while NH3 is linked to the agriculture 
sector due to the NO2 and NH3 are the major pollutant in the trans
portation and agriculture sectors, respectively. 

It is worth noting that the pre-assessment emission inventories in the 
BASE scenarios exhibit distinct grid boundaries for both the trans
portation and agricultural sectors because the original emission in
ventories resolution is 0.25◦ (~25 km) while the resolution of the 
simulation domain is 3 km, and the grid boundaries in the pre- 
assessment emission inventories are from the original emission in
ventories. Thus, the pre-assessment emission inventories in the BASE 
scenarios cannot capture the detailed spatial patterns due to there are no 
spatial surrogates to reflect the activity intensity. In the case of trans
portation sources, the pre-assessment emission inventories in the BASE 
scenario provide only a general overview of high emission values at the 
junction of Guangzhou and Foshan, as well as in the Shenzhen area. 
Conversely, the post-assessment emission inventories of transportation 
sources offer a more detailed portrayal of the spatial distribution along 
roads, thus providing a finer view of the emission patterns. Similarly, for 
agricultural source inventories assigned using grid data, the post- 
assessment emission inventories offer a more detailed representation 
of the relationship between agricultural source emissions and agricul
tural land compared to the pre-assessment emission inventories. 

Additionally, the model-ready emission inventories in the EXPR-V 
scenario are based on the post-assessment emission inventories in the 
EXPR scenario, but with vertical allocation via the vertical profile 
(Terrenoire et al., 2015), which suggests only the emission inventories 
from power and industry sources have the aloft emissions. Fig. 8 depicts 
the vertical distribution of power and industrial source emissions and 
the vertical profile shows that the emissions from the power sector are 
mainly concentrated at a pressure level range of 985-980 hPa, whereas 
the emissions from the industry sector are mainly concentrated at the 
990 hPa pressure level. It is crucial to consider that industrial emissions 
are predominantly released at higher altitudes, a factor that is often 
overlooked in certain studies (Wang et al., 2022; Wu et al., 2023). 

3.3. Various emissions performance in CMAQ 

To assess the performance of various model-ready emission in
ventories within the WRF-CMAQ framework, this study calculated the 
average concentrations of key pollutants for selected months—January, 
April, July, and October. With no significant differences found across 
these periods (Fig. S1), the average concentrations from these four 
months were used for further evaluation analysis. These calculated av
erages were then validated through comparison with the observational 
data presented in Section 3.1. The results of these comparisons, 
including the relevant metrics for each pollutant, are concisely sum
marized in Table 2. This table reveals a slight underestimation of O₃ and 
PM2.5 concentrations, with NMBs ranging from − 10.4% to − 7.6% and 
− 33.2% to − 21.4%, respectively. Conversely, NO₂ and CO concentra
tions are somewhat overestimated, with NMBs ranging from 8.8% to 
17.6% and 6.0%–12.7%, respectively. Additionally, Rs for all assessed 
pollutants, except for NO₂, exceed 0.7. Specifically, the Rs for O₃ are 
between 0.716 and 0.732, for CO between 0.770 and 0.794, and for 
PM2.5 between 0.786 and 0.791, while NO₂ presents lower Rs, ranging 

Fig. 8. The vertical profile for power and industry.  

Table 2 
The summarized metrics for evaluation. The ‘Sim.’ And ‘Obs.’ represent the 
mean value of simulation and observation, respectively and the unit in the first 
column is only for Sim., Obs., and MB.   

Scenario Sim. Obs. MB NMB R 

O3 (μg/m3) BASE 50.9 56.1 − 5.2 − 10.4% 0.721  
EXPR 51.2 56.1 − 4.9 − 9.6% 0.716  
EXPR-V 52.3 56.1 − 3.8 − 7.6% 0.732 

NO2 (μg/m3) BASE 42.3 37.6 4.7 17.6% 0.546  
EXPR 41.0 37.6 3.4 13.3% 0.540  
EXPR-V 39.4 37.6 1.8 8.8% 0.535 

CO (μg/m3) BASE 470.6 411.2 59.4 12.7% 0.770  
EXPR 465.6 411.2 54.4 11.3% 0.779  
EXPR-V 443.7 411.2 32.5 6.0% 0.794 

PM2.5 (μg/m3) BASE 26.5 33.9 − 7.4 − 21.4% 0.786  
EXPR 24.1 33.9 − 9.8 − 28.5% 0.789  
EXPR-V 22.5 33.9 − 11.3 − 33.2% 0.791  

Fig. 9. Simulation average values for (a) O3, (b) NO2, (c) CO, and (d) PM2.5 in 
various scenarios with 5% error range and the black line is the observation 
average values for corresponding pollutants. 
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from 0.535 to 0.546. Despite these variances, the overall modeling 
indices for all pollutants demonstrate a comparatively satisfactory level 
of accuracy and are indicative of the capability of the MEIAT-CMAQ tool 
to create reasonable emission inventories to simulate atmospheric 
pollutants. 

Fig. 9 illustrates the bias—the discrepancy between simulated and 
observed values—concerning the gas species O₃, NO₂, and CO, noting a 
marked amelioration, which suggests that the adoption of post- 
assessment emissions leads to reduced MBs for O₃, NO₂, and CO, with 
CO experiencing the most notable reduction. In the EXPR and EXPR-V 
scenarios, the MB of O3 decreased from − 5.2 μg/m3 to − 4.9 μg/m3 

and -3.8 μg/m3, respectively, reflecting improvements of 5.7% and 
26.9%. For NO2, the MB declined from 4.7 μg/m3 to 3.4 μg/m3 and 1.8 
μg/m3, showing enhancements of 27.6% and 61.7%, respectively. 
Similarly, the MB of CO dropped from 59.4 μg/m3 in the BASE scenario 
to 54.4 μg/m3 (an 8.4% improvement) and 32.5 μg/m3 (a 45.2% 
improvement) in the EXPR and EXPR-V scenarios, respectively. Given 
that CO is an inert gas frequently utilized as a tracer in studies, its 
concentration is primarily influenced by regional meteorological con
ditions. Consequently, the enhanced simulation performance of CO that 
uses post-assessment emissions underscores the capability of the MEIAT- 
CMAQ tool to accurately capture the characteristics of actual emissions. 
Moreover, the marked improvement in MB of CO in the EXPR-V scenario 
underscores the critical role of vertical allocation in processing emission 
inventories. 

However, it is important to note an increase in the bias for PM2.5, 
which may be attributed to an overestimation of wind speeds and a 
systematic underestimation of the original emission inventories. In 
addition, the higher dry deposition rate of the accumulation mode 
aerosols in CMAQv5.4 can also lead a lower modeling PM2.5 concen
trations (Pleim et al., 2022). This is evident from the rise in R for PM2.5 
following the transition from pre-assessment to post-assessment emis
sions, indicating a more accurate representation of PM2.5 emissions by 
the MEIAT-CMAQ tool. 

To evaluate the spatial distribution of pollutants, Fig. 10 presents the 
standard deviation of the MBs at each site (Eq. (12) and Eq. (13)), 
reflecting the spatial performance for each scenario. The results indicate 
a significant enhancement in spatial performance across all pollutants 

when using post-assessment emission inventories, both with and 
without vertical allocation. Compared to the BASE scenario, the EXPR-V 
scenario demonstrates a greater overall improvement in spatial simu
lation, attributable to its incorporation of vertical allocation, which 
more accurately represents emission characteristics. Notably, the spatial 
performance of O3 and NO2 has significantly improved, with reductions 
in standard deviation by 1.2 μg/m3 (an improvement of 13.5%) and 1.0 
μg/m3 (an improvement of 9.5%) respectively, when compared to the 
BASE scenario. Additionally, for CO, NO2, and PM2.5, the spatial 
improvement effect is further enhanced when using post-assessment 
emission inventories with vertical allocation, resulting in reductions in 
standard deviation by 1.9 μg/m3 (an improvement 17.6%), 20.8 μg/m3 

(an improvement 16.6%), and 1.7 μg/m3 (an improvement 23.2%) 
respectively. 

The evaluation outcomes from the WRF-CMAQ model demonstrate 
that applying post-assessment emission inventories, with and without 
vertical allocation, effectively reduces simulation biases for gaseous 
pollutants (O3, NO2, and CO) and more accurately captures PM2.5 trends. 
Moreover, these post-assessment emission inventories significantly 
enhance the spatial performance of the CMAQ model. 

4. Conclusion 

We have developed a user-friendly modular tool called MEIAT- 
CMAQ for preparing emission files specifically designed for the CMAQ 
model. MEIAT-CMAQ encompasses spatial, species, and temporal allo
cations for the original emission inventory. While we primarily use 
gridded emission inventories as input to generate model-ready emission 
files in this paper, the modular structure of MEIAT-CMAQ allows for 
flexibility in handling various formats, including tabulated emission 
inventories, which are commonly used for local emissions in a statistical 
format, which feature is not conducted in previous integrated tools such 
as ISATv2.0 (Wang et al., 2023). 

Furthermore, we have included pre-packaged spatial surrogates in 
the program to facilitate the spatial allocation process. Additionally, we 
have prepared temporal allocation profiles for the five main sectors 
(residential, transportation, power, industry, and agriculture), species 
allocation profiles for the CB06 mechanism and the SAPRC07 mecha
nism, as well as vertical allocation files for the industry and power 
sectors. These pre-packaged files are readily available for users to 
directly utilize. However, if these files do not fully meet the specific 
requirements of users, they can easily customize them by utilizing the 
pre-packaged files as templates and making necessary modifications as 
per their needs. 

In specific terms of emission allocation methods, TEMMS employs 
the “intersect” method to allocate transportation source emissions, of
fering greater refinement (Namdeo et al., 2002). However, the main 
drawbacks of “intersect” are its computationally intensive nature and 
slow processing speed, along with limitations specific to the source 
sector (transportation). ISAT addresses these issues through the “sub-
grid” method, which speeds up calculations but at the cost of reduced 
accuracy (Wang et al., 2023). In contrast, MEIAT-CMAQ incorporates an 
advanced GIS interface and utilizes the “intersect” method, not only 
retaining the accuracy benefits but also enhancing computational effi
ciency. Moreover, MEIAT-CMAQ is capable of allocating emissions not 
just to the transportation sector but to other pollution sources as well. 
Additionally, MEIAT-CMAQ has enhanced its functionality with support 
for vertical allocation, which is not included in other tools such as 
TEMMS, THOSCANE (Monforti and Pederzoli, 2005), and ISAT, allow
ing for a more realistic representation of emissions from key sectors 
including industry and power plants, and after completing all allocation 
operations, users can directly export model-ready emissions with the 
assistance of MEIAT-CMAQ. 

Additionally, we conducted a comparison between the pre- 
assessment emissions and the post-assessment emissions to evaluate 
their impact on the performance of the CMAQ model. The results show 

Fig. 10. The standard deviation of MBs with 5% error range in each site for 
each scenario. (a)–(d) are the results of O3, NO2, CO, and PM2.5, respectively. 
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that the application of post-assessment emission inventories, both with 
and without vertical allocation, ameliorates the simulation biases for 
gaseous pollutants (O₃, NO₂, and CO) and more accurately captures the 
PM2.5 trends, and these post-assessment emission inventories signifi
cantly enhance the spatial performance of the CMAQ model. Conse
quently, it is evident that the model-ready emission inventories, 
downscaled through MEIAT-CMAQ, substantially enhance the efficacy 
of the CMAQ model. These findings suggest that employing high- 
resolution emission inventories through MEIAT-CMAQ can enhance 
the accuracy and scientific validity of the model, especially when con
ducting higher-resolution regional air quality simulations. 

MEIAT-CMAQ offers an efficient approach for assigning inventories, 
simplifying the process of transforming coarse-resolution emission in
ventories into high-resolution emission files that can be directly inputted 
into the model. Furthermore, MEIAT-CMAQ supports user flexibility by 
allowing the selection of any desired period for generating the model- 
ready emission file, providing valuable technical support for auto
mating operations within the business department. 

Code and data availability 

The source code of MEIAT-CMAQv1.0 and input data used to pro
duce the results used in this paper are archived on Zenodo at http 
s://zenodo.org/record/8001532. 
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Appendix A. MEIAT-CMAQ step-by-step guide 

Taking the nested domains in Fig. 6 with a spatial resolution of 3 km as an example, and the MEIC in 2017 as the original emission inventories. 

Step 1: namelist.input configuration 

(a) namelist.input attribution introduction  

Table A1 
the namelist.input attribution.  

Attribution Description Process 

Global 
griddesc_file The path of GRIDDESC file. A 
griddesc_name The grid name of domain. A 
big_grid_file The path of coarse grid shapefile. S 
geotiff_dir The path of original emission directory (GeoTIFF format). S 
inventory_label The prefix in the original emission inventory file name. S 
inventory_year The year identifier in the original emission inventory file name. S 
sectors The sectors identifier in the original emission inventory file name. A 
allocator The file name of spatial surrogates in the “allocator” directory. S 
allocator_type The type of spatial surrogates (raster or line). If this option is line, the allocator will read the “line” part. S 
inventory_mechanism The chemical mechanism of original emission inventories. Sp. & T 
target_mechanism The chemical mechanism of model-ready emission file. Sp. & T 
start_date The start date of model-ready emission file. Sp. & T 
end_date The end date of model-ready emission file. Sp. & T 
cores Number of parallel cores. A 
Line 
line_files The file name of line shapefile in the “allocator” directory. S 
line_factors The weight of each road mentioned in line_files. S 
Control 
create_grid The control of ‘Create fine grid’ module. S 
grid_info The control of ‘Fine grid information’ module. S 
create_factor The control of ‘Calculate allocation factor’ module. S 
coarse_emission The control of ‘Calculate coarse grid emission’ module. S 
create_source The control of ‘Calculate fine grid emission’ module. S 

A = All processes; S = Spatial allocation process; Sp. = Species allocation process; T = Temporal allocation process. 
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(b) namelist.input configuration in this example  

Table A2 
Contents of case namelist.input 

Step 2: spatial allocation 

Enter the command “python coarse_emission_2_fine_emission.py” into the terminal. 

Step 3: create model-ready emission file (species and temporal allocation) 

(a) Species allocation profile introduction 
Table A3 displays a portion of the transportation source species allocation profile with the “pollutant” column representing the species name 

identifier in the original emission inventory file name, while the “emission_species” column denotes species names recognized by CMAQ that will serve 
as variable names in the model-ready emission file. For the same species, the sum of “split_factor” should be theoretically equal to 1, which represents 
the weight of splitting the same species into species that can be identified by CMAQ. Typically, original emission inventories are provided in units of 
“Mg” or “Mmol”, which, even if not directly available, can be easily converted to “Mg” or “Mmol”. Hence, the “inv_unit” column offers the user a 
choice between the two options. However, for use in CMAQ, emission files must be in “mol/s" (gaseous species) or “g/s" (solid species) units. 
Therefore, only these units are supported in the “emi_unit” column. The “divisor” column denotes the molecular mass, which serves as the unit 
conversion factor.  

Table A3 
Portions of the transportation species profile  

pollutant emission_species split_factor divisor inv_unit emi_unit 

SO2 SO2 1 64 Mg mol/s 
SO2 SULF 0 98 Mg mol/s 
NH3 NH3 1 17 Mg mol/s 
CO CO 1 28 Mg mol/s 
PMC PMC 1 1 Mg g/s 
NOx NO 0.9 30 Mg mol/s 
NOx NO2 0.092 46 Mg mol/s 
NOx HONO 0.008 47 Mg mol/s 
OC POC 1 1 Mg g/s  

(b) temporal allocation profile introduction 
It is important to highlight that when allocating monthly-scale emission inventories to individual weeks, the model assumes four weeks per month, 

with equal total emissions distributed across each week. Subsequently, the module apportions emissions for each day based on the weekly temporal 
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profile. In this profile, values ranging from 0 to 6 in the “weekly” column (Table A4) correspond to Sunday through Saturday, respectively. Similarly, 
in the hourly temporal file, values from 0 to 23 in the “hourly” column (Table A5) signify 0 to 23 UTC, respectively. Except for the first column, the 
column names of the other columns are the emission sectors, which will keep consistent with the sector identification in the original emission in
ventory file name.  

Table A4 
The content of weekly temporal profile.  

weekly power industry residential transportation agriculture 

0 0.13 0.078 0.143 0.108 0.143 
1 0.147 0.162 0.143 0.155 0.143 
2 0.147 0.162 0.143 0.155 0.143 
3 0.147 0.162 0.143 0.155 0.143 
4 0.147 0.162 0.143 0.155 0.143 
5 0.147 0.162 0.143 0.155 0.143 
6 0.135 0.112 0.143 0.117 0.143   

Table A5 
The content of hourly temporal profile.  

hourly power industry residential transportation agriculture 

0 0.032 0.026 0.038 0.017 0.026 
1 0.03 0.007 0.038 0.013 0.019 
2 0.029 0.007 0.03 0.014 0.019 
3 0.028 0.007 0.045 0.015 0.018 
4 0.029 0.007 0.045 0.016 0.019 
5 0.032 0.007 0.038 0.016 0.021 
6 0.035 0.007 0.03 0.029 0.029 
7 0.04 0.029 0.03 0.056 0.033 
8 0.0433 0.045 0.038 0.0599 0.0473 
9 0.0457 0.068 0.038 0.059 0.0576 
10 0.0479 0.068 0.03 0.0594 0.07 
11 0.0495 0.068 0.045 0.0501 0.0885 
12 0.0495 0.068 0.045 0.0501 0.0885 
13 0.0497 0.068 0.038 0.0588 0.0823 
14 0.0501 0.068 0.03 0.06 0.0803 
15 0.05 0.068 0.03 0.062 0.07 
16 0.0497 0.068 0.038 0.0594 0.0597 
17 0.0489 0.066 0.075 0.0574 0.0453 
18 0.0477 0.063 0.075 0.0557 0.0309 
19 0.0473 0.037 0.075 0.049 0.0268 
20 0.0466 0.037 0.075 0.0454 0.0226 
21 0.044 0.037 0.054 0.0417 0.0206 
22 0.0397 0.037 0.018 0.0308 0.0206 
23 0.0352 0.037 0.018 0.0216 0.0206  

(c) complete species and temporal allocation 
Enter the command " python Create-CMAQ-Emission-File.py” into the terminal. 

Step 4: vertical allocation 

(a) Vertical allocation profile introduction 
Table A6 presents the vertical allocation profile, listing “vglytop” as sigma coordinates. These values can be obtained by querying the METCRO3D 

file, an MCIP output where any layers not involved are considered as unemitted for this layer. The “fraction” column denotes the relevant distribution 
factor  

Table A6 
vertical allocation profile  

Vglvltop fraction 

1.000 0.06 
0.995 0.16 
0.990 0.75 
0.985 0.03  

(b) Complete vertical allocation 
Enter the command " python vertical_allocation.py” into the terminal. 
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Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.atmosenv.2024.120604. 
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