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Impact of different urban canopy models on air quality simulation in 
Chengdu, southwestern China 
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H I G H L I G H T S  

1. The feasibility of different urban canopy models in complex terrain is investigated over the megacity Chengdu. 
2. Overestimation of wind speed under weak wind fields has been improved by employing urban canopy models. 
3. The extensive use of air conditioning systems shows improvements in air quality over Chengdu in summer.  
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A B S T R A C T   

Urban air pollution has emerged as a prominent public health concern in megacities and highly developed city 
clusters. Accurate modelling of urban air quality over complex terrain is challenging due to heterogeneous urban 
landscapes and multiscale land-atmosphere interactions. In this study, we investigated the applicability of urban 
canopy models in the Weather Research and Forecast (WRF) model and assessed the impacts of implementing 
these models on the urban air quality simulation in the Community Multiscale Air Quality (CMAQ) model over 
the megacity Chengdu, southwestern China. The land use and land cover of Chengdu were updated in WRF by 
using the land-use products in 2017 from the Moderate-resolution Imaging Spectroradiometer (MODIS). Sensi
tivity experiments with various urban canopy models were conducted to investigate the feasibility of different 
urban canopy models on WRF-CMAQ simulations. We found that the SLAB model significantly underestimates 
NO2 and PM2.5 concentrations, with mean fractional bias in winter (summer) reaching 52.93% (− 50.34%) and 
− 102.82% (− 23.12%), respectively. Such large biases are mainly attributed to overpredicted wind speeds 
resulting from the flat structure in the SLAB model. In contrast, the BEM (a multilayer urban canopy model 
coupled with air-conditioning systems) model yields the best model performance in both winter and summer, 
with mean fractional errors of 33.15% (38.96%) and 34.10% (33.15%) for NO2 and PM2.5 in winter (summer), 
respectively. The UCM (a single-layer urban canopy model) model illustrates good performance in summer, with 
MFBs of 25.61% for NO2 and 19.03% for PM2.5, while NO2 and PM2.5 concentrations are overestimated in 
winter, with MFBs of 62.58% and 38.19%, respectively. In contrast, BEP (a multilevel urban canopy model)- 
modelled NO2 (MFB: 37.18%) and PM2.5 (MFB: 18.72%) correlate well with observations in winter, while 
significantly overestimated air pollutant concentrations in summer with MFBs of NO2 and PM2.5 of 49.70% and 
44.50%, respectively. In general, the BEP model and the BEM model are well suited for air quality simulations 
over Chengdu in winter, and the BEM model could be considered for air quality simulations in summer. 
Furthermore, we assessed the effects of extensive usage of air conditioning systems in Chengdu during sum
mertime, and the results suggest that using air conditioning systems facilitates the dispersion of air pollutants 
over Chengdu. This study pinpoints the limitations of default WRF configurations and tests the applicability of 
urban canopy models in the WRF-CMAQ model over Chengdu, in addition highlighting the crucial role of urban 
canopy models in urban meteorological-air quality simulations.   
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1. Introduction 

With ongoing industrialization and rapid economic growth, global 
megacities and city clusters have witnessed a continued urbanization 
process with an expansion of urban regions and changing urban land
scapes (Li et al., 2019; Memon et al., 2009; Wu et al., 2019; Yan et al., 
2020). The acceleration of urbanization has led to rapid changes in 
surface land use, and high-rise buildings in megacities have formed 
urban canopies, which alter the urban surface energy balance and sur
face roughness. These changes significantly affect processes of 
land-atmosphere interactions in the urban region (Arnfield, 2003; 

Memon et al., 2009; Zhang et al., 2010; Wang et al., 2021a) and 
contribute to air pollution and regional climate change (Gu et al., 2021; 
Hu et al., 2021; Lin et al., 2008; Wu et al., 2020; Wu et al., 2021; Yang 
et al., 2020a; Zhang et al., 2008). 

To resolve the intraurban spatial patterns of meteorological condi
tions and air pollutants, the Weather Research and Forecast (WRF)– 
Community Multiscale Air Quality (CMAQ) modelling system has been 
widely used in regional air quality studies (Ma et al., 2019; Yang et al. 
2020b, 2021; Wang et al., 2021a). While the WRF model could capture 
the variability of meteorological conditions in the urban atmosphere, 
the most widely adopted configuration in the WRF model without urban 
canopy models has considerable limitations in reproducing urban can
opy structures (Liao et al., 2014; Vahmani and Ban-Weiss, 2016). Spe
cifically, the default configuration of the SLAB model in WRF simplifies 
the urban area into a plane with greater roughness and less reflectivity 
(Wang and Hu, 2020). However, the actual city is a three-dimensional 
space, and buildings and streets impact shortwave radiation 

Fig. 1. Map of triple nested domains for the WRF-CMAQ model.  

Table 1 
WRF and CMAQ modelling configurations and inputs.  

Model attribution Configuration 

Land use/cover data Modify MODIS land cover data in 2017 
Meteorological initial conditions 

(ICs) and boundary conditions 
(BCs) 

NCEP Final (FNL) reanalysis data 

Anthropogenic emissions MEIC in 2017 
Microphysics Purdue Lin(Chen and Sun, 2002) 
PBL physics scheme MYJ (Janjić, 1994) 
Shortwave and longwave radiation Goddard (Chou et al., 2001) and Rapid 

Radiative Transfer Model (RRTM) (Mlawer 
et al., 1997) 

Land surface model Noah land surface model (LSM) (Ek et al., 
2003) 

Gas-phase chemistry Carbon bond chemical reaction mechanism 
(CB06) (Yarwood et al., 2010) 

Aerosol module AERO6 (Pye et al., 2017; Murphy et al., 
2017) 

Note: MODIS = Moderate-resolution Imaging Spectroradiometer; NCEP = Na
tional Centers for Environmental Prediction; MEIC = Multiresolution Emission 
Inventory for China. 

Table 2 
Settings of canopy parameters.   

SLAB UCM BEP BEM 

Canopy layer 
description 

No canopy 
layer 

Single- 
layer 

Multilayer Multilayer 

Fixed anthropogenic 
heat 

No Yes Yes Yes 

Other anthropogenic 
heat 

No No No Yes 

Fraction of vegetation No Yes Yes Yes 
PBL coupling scheme MYJ MYJ MYJ MYJ  

Table 3 
Model parameters for UCM and BEP (BEM).  

Parameter Unit Value UCM BEP (BEM) 

Building height m 20 YES Table 3 
Building width m 15 YES Table 3 
Width of the road m 10 YES Table 3 
Urban fraction Fraction 0.95 YES YES 
Roof albedo Fraction 0.2 YES YES 
Wall albedo Fraction 0.2 YES YES 
Pavement albedo Fraction 0.2 YES YES 
Roof roughness length m 0.15 YES YES 
Wall roughness length m 0.05 YES NO 
Pavement roughness length m 0.05 YES YES  

Table 4 
Model parameters for only BEP and BEM.  

Street direction (◦C) Width of the road (m) Building width (m) 

0.0 15.0 15.0 
90.0 15.0 15.0 

Building height (m)  Percentage (%) 

15.0  10.0 
20.0  25.0 
25.0  40.0 

Note: The target temperature of the air-conditioning system in the BEM model is 
24 ◦C. 
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absorption, wind speed, and temperature in the city (Li et al., 2016). 
Therefore, it is challenging to accurately capture the complex physical 
and chemical processes within the city by using the SLAB model. In 

recent years, mesoscale numerical models coupled with urban canopies 
have been widely implemented to examine the dynamic thermal prop
erties of the urban boundary layer (UBL) and deepen the understanding 
of local and regional climate change induced by urban canopies (Barlow, 
2014). To represent the difference between the urban landscape and 
other land cover types, existing studies reconstructed the heat balance of 
the urban surface by changing the heat capacity and energy conductivity 
(Zhu et al., 2017). However, this method still has the limitation that the 
discrepancy of different urban structure forms could not reflect the 
heterogeneity of urban heat storage capacity (Salamanca et al., 2011). 
To adequately address this issue, three urban canopy models, including 
the single-layer urban canopy model (UCM), the multilayer canopy layer 
model (BEP), and the BEM (a multilayer urban canopy model coupled 
with air-conditioning systems) model, were developed and incorporated 
into the WRF model. 

While rapid urbanization has occurred over global megacities and 
major city clusters, the impacts of the urbanization process on the urban 
environment are best illustrated at a local or regional scale given the 
complex multiscale interactions between topography, anthropogenic 
emissions, and meteorological conditions. In recent years, extensive 
studies have been carried out on mesoscale weather model systems 
coupled with urban canopies to explore their applicability to regional 
climate change and air quality. Liao et al. (2014) adopted canopy models 
with WRF to examine the applicability of the canopy model over the 
Yangtze River Delta (YRD) and found that implementing BEP and BEM 
models could improve the model performance in predicting 10-m wind 
speed over urban areas in contrast to the weak capability in the SLAB 
model, illustrating the necessity of incorporating urban canopy models 
towards optimizing urban meteorology-air quality simulations. 
Furthermore, Liao et al. (2015) adopted a canopy model to examine 
urban expansion over the YRD and recognized that human-induced 
urban expansion resulted in an increase in 2-m temperature and plan
etary boundary layer height (PBLH) while reducing 10-m wind speed, in 
turn leading to elevated O3 levels and decreased PM10 concentrations. 
Similarly, Wang et al. (2009) utilized the WRF-UCM-Chem model to 
examine the expansion of urban regions over the Pearl River Delta (PRD) 
and YRD, and the results showed that both temperature and ambient O3 
concentrations increased due to the urbanization process. Most of the 
literature has focused on densely populated areas in eastern China (YRD, 
PRD, etc.), while there is limited work on the Sichuan Basin (SCB) (Wang 
et al., 2021b). Chengdu (Fig. 1), the typical megacity located in the SCB, 
is the most relevant and typical case due to its unique features of 
meteorological conditions and complex topography. Due to the rapid 
urbanization process and unique meteorological conditions, air pollu
tion in Chengdu has become increasingly severe (Wu et al., 2021). 
Recent work has focused on understanding the causes of severe air 
pollution in Chengdu as well as the development of effective regulation 

Fig. 2. Window diagram.  

Fig. 3. Urban land cover types in Chengdu.  

Fig. 4. Monthly average emission intensity of NOx in (a) January and (b) July.  
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policies (Yang et al. 2020a, 2021). However, previous meteorology-air 
quality modelling studies over Chengdu and the SCB often lack consid
eration of urban canopy structures, and the applicability of various 
urban canopy models has not yet been adequately assessed. 

In this study, we tested the applicability of four urban canopy models 
(including SLAB (reference group), UCM, BEP, and BEM) in the WRF 
model and performed air quality simulations by using CMAQv5.3.2 to 
investigate the impact of urban canopy models on meteorological con
ditions and urban air quality over Chengdu city in summer and winter in 
2017. In Section 2, we describe the observational data and configura
tions of the WRF-CMAQ model system. Section 3 presents the model 
evaluations against ground-level observations. In Section 4, we quantify 
the results of implementing urban canopy models on meteorological 
conditions and urban air quality. The conclusions are summarized in 

Section 5. 

2. Data and methods 

2.1. WRF–CMAQ model configurations 

The WRF-CMAQ modelling system was utilized to simulate the 
meteorological conditions and air quality in this work (US EPA Office Of 
Research and Development, 2020). Meteorological conditions for 
driving the CMAQ model are provided by the Weather Research and 
Forecasting (WRFv4.1.2) model (Skamarock et al., 2019). Fig. 1 presents 
the triple nested domain, which is centred over Chengdu city. The 
horizontal resolution of each model domain is 27, 9, and 3 km. Each 
domain consists of 32 vertical layers from the ground to 100 hPa, with a 

Fig. 5. The locations of meteorological measurements and air quality monitoring sites in Chengdu city.  

Fig. 6. Diurnal changes of 2-m temperature over Chengdu city in January.  
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Fig. 7. Diurnal changes of 2-m temperature over Chengdu city in July.  

Table 5 
Statistical metrics of 2-m temperature under various urban canopy models.  

Station name Indicators Mouth SLAB UCM BEP BEM 

CZ RMSE Jan. 4.82 5.74 4.52 4.67 
July 7.05 5.77 5.01 6.02 

MB Jan. 1.94 2.43 1.82 1.87 
July 3.04 2.36 1.93 2.51 

R Jan. 0.74 0.73 0.75 0.73 
July 0.85 0.88 0.88 0.85 

SL RMSE Jan. 6.16 6.89 5.98 5.88 
July 4.93 4.53 4.52 4.64 

MB Jan. 2.61 2.99 2.54 2.49 
July 1.91 1.70 1.68 1.76 

R Jan. 0.72 0.69 0.73 0.72 
July 0.81 0.85 0.84 0.83 

XD RMSE Jan. 6.14 7.24 5.73 5.64 
July 4.96 4.82 4.68 4.76 

MB Jan. 2.59 3.15 2.42 2.38 
July 1.86 1.80 1.75 1.74 

R Jan. 0.74 0.69 0.76 0.76 
July 0.79 0.80 0.80 0.79 

WJ RMSE Jan. 5.15 6.15 4.95 4.96 
July 6.13 5.07 4.95 5.52 

MB Jan. 2.09 2.63 2.02 2.01 
July 2.48 1.94 1.88 2.13 

R Jan. 0.74 0.70 0.74 0.73 
July 0.83 0.87 0.86 0.84 

Overall result RMSE Jan. 4.94 6.23 6.19 5.30 
July 5.66 4.61 4.75 5.29 

MB Jan. 2.02 2.66 2.63 2.19 
July 2.30 1.73 1.76 2.04 

R Jan. 0.74 0.72 0.74 0.73 
July 0.87 0.83 0.79 0.85  

Table 6 
Statistical metrics for wind speed under different urban canopy models.  

Overall results SLAB UCM BEP BEM 

January MB 1.30 1.35 1.00 1.00 
July MB 1.64 1.58 1.24 1.31  

Table 7 
Statistical metrics for CMAQ model evaluation over Chengdu in January 2017.  

Station name NO2 in Jan. SLAB UCM BEP BEM 

JQLH MFB − 19.09% 97.70% 59.21% 53.59% 
MFE 41.53% 50.72% 32.76% 30.22% 
R 0.04 0.34 0.45 0.48 

SLD MFB − 114.68% 26.18% − 17.78% − 23.86% 
MFE 62.34% 38.32% 29.70% 28.94% 
R − 0.14 0.21 0.41 0.44 

LYS MFB − 25.02% 63.86% 70.11% 70.04% 
MFE 40.80% 38.14% 40.54% 40.30% 
R 0.14 0.24 0.21 0.23 

Overall MFB − 52.93% 62.58% 37.18% 33.26% 
MFE 48.22% 42.39% 34.33% 33.15% 
R 0.01 0.26 0.36 0.38 

Station name PM2.5 in Jan, SLAB UCM BEP BEM 

JQLH MFB − 90.72% 39.00% − 25.05% − 34.34% 
MFE 52.29% 40.92% 30.23% 30.75% 
R 0.03 0.28 0.40 0.40 

SLD MFB − 130.86% 5.27% − 40.06% − 46.29% 
MFE 66.98% 45.38% 42.34% 41.85% 
R 0.05 0.27 0.23 0.23 

LYS MFB − 86.89% 10.29% 8.96% 5.15% 
MFE 49.35% 30.17% 30.71% 29.69% 
R 0.33 0.49 0.31 0.34 

Overall MFB − 102.82% 38.19% − 18.72% − 25.16% 
MFE 56.21% 38.82% 34.43% 34.10% 
R 0.14 0.35 0.31 0.32  
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surface layer depth of nearly 20 m. The physical and chemical param
eterizations for the WRF-CMAQ model are listed in Table 1. We simu
lated the meteorological conditions and air quality in January and July 
2017 as the representative months in winter and summer. The first 10 
days were treated as spin-up time and were not analysed in this study. 
The initial and boundary conditions in the WRF simulation are obtained 
from the National Centers for Environmental Prediction (NCEP) final 
0.25◦ × 0.25◦ reanalysis data. The initial and boundary conditions of 
CMAQ are generated from the default profiles in the CMAQ model, 
which represent a clean atmosphere. Anthropogenic emissions of air 
pollutants are based upon the Multiresolution Emission Inventory for 
China (MEIC) in 2017, which was developed by Tsinghua University 
with a grid resolution of 0.25◦ × 0.25◦(Zheng et al., 2018). The land 
cover and land use data used in WRF are updated by using 
Moderate-resolution Imaging Spectroradiometer (MODIS) land use 
products. The hourly meteorological observations are acquired from the 
China National Meteorological Center. The air quality monitoring data 
are obtained from the China Environmental Monitoring Center. 

2.2. Urban canopy models in WRF 

The parameters of urban canopy schemes are summarized in Table 2, 
Table 3, and Table 4 (He et al., 2009). Each urban canopy model has 
unique features in representing the parameterizations in urban regions. 
The single-layer urban canopy model (UCM) was proposed as a complex 
urban canopy model with advanced features, including the representa
tion of the geometric shape of the city by assuming a street of infinite 
length and considering the three-dimensional urban surface, including 
walls, roofs, and roads (Kusaka et al., 2001; Kusaka and Kimura, 2004). 
The multilayer canopy layer model (BEP, building effect parameteriza
tion) developed by Martilli et al. (2002) not only inherits the model 
characteristics of the UCM but also allows direct interactions between 
the buildings and the planetary boundary layer (PBL) (Ezber et al., 
2007) and considers the vertical distribution of energy between the 
three-dimensional urban surface and the buildings in the entire canopy. 
In the BEM model, the urban canopy is treated as a multilayer model 
with a building energy model including anthropogenic heat due to 
air-conditioning systems. The detailed city structure is well represented 

in the BEM model. In brief, the urban canopy model is divided into a 
single-layer urban canopy model (UCM) and a multilayer urban canopy 
model (BEP and BEM). The difference between these two types of urban 
canopies lies mainly in the impact on the energy budget over urban 
areas. The single-layer urban canopy model treats the heat flux between 
buildings and buildings as a constant variable, while the multilayer 
urban canopy model stratifies heat fluxes according to building height. 

2.3. Data processing method 

2.3.1. Method for updating the underlying surface data 
The WRF urban canopy model in this study requires three new types 

of urban surfaces: high-density urban surfaces, medium-density urban 
surfaces, and low-density urban surfaces. The default underlying surface 
data in WRF were constructed in 2000 and contain a single urban surface 
type. Compared to the MODIS data in 2017, we detect that there are 
differences between the MODIS land use in 2017 and the outdated land- 
use data of WRF in 2000. To capture the variability of land use and land 
cover changes in Chengdu, we integrated MODIS global 500 m land use 
data in 2017 to reclassify the urban surface through 3*3 window sta
tistics. As shown in Fig. 2, each grid has an index for land use type, either 
urban surface or nonurban surface. First, the dominant land use type of 
the window is determined, which is the type with the highest proportion 
in the window. If the dominant land use type is the urban land surface, 
we further calculate the proportion of the urban land surface in the 
current window. If the proportion of urban land use is less than 50%, it is 
treated as a low-density urban surface, and if it is between 50% and 
80%, it is classified as a medium-density urban surface. Other situations 
are considered a high-density urban surface. Fig. 3 shows that the 
classified urban land-use types in Chengdu with downtown Chengdu 
and densely populated districts and counties are clearly identified. 

2.3.2. Allocation of anthropogenic emission inventory 
In this study, we adopted the Inventory Spatial Allocate Tool (ISAT) 

developed by Wang et al. (2019) for allocating the MEIC emission in
ventory to the CMAQ model grids. The spatial surrogates for trans
portation sources, residential sources, agricultural sources, and 
industrial sources in the emission allocation are road networks, popu
lation densities, land use types, and industrial points of interest (POIs), 
respectively. Fig. 4 presents the monthly average NOx emission intensity 
in January and July 2017. The urban core area of Chengdu city exhibits 
the highest NOx emission intensity, and NOx emission hotspots are 
widely distributed in suburban regions and highways around the city. 

2.3.3. Site description and measurement 
In this study, observation data were used to verify the meteorological 

parameters and air pollutant concentrations simulated by WRF and 
CMAQ (Fig. 5). Hourly meteorological observations were obtained from 
four stations located in a different county of Chengdu: Chongzhou (CZ), 
Shuangliu (SL), Wenjiang (WJ), and Xindu (XD). All meteorological data 
are from the China Meteorological Data Service Center and have passed 
the rigorous quality check. Air pollutant concentrations simulated by the 
CMAQ model are validated by ambient measurements from JinQuan
LiangHe (JQLH), ShiLiDian (SLD), and LingYanSi (LYS) stations. Among 
them, JQLH and SLD are located in the high-density and medium-low- 
density urban areas of Chengdu. LYS is a typical suburban site. In 
addition, the JQLH station is located in the Jinniu District of Chengdu, 
50 m from the nearest road, and it is located in residential communities, 
while the SLD station is located in the Chenghua District of Chengdu, 
near the railway and road. The LYS site is a typical rural station located 
in Dujiangyan, Chengdu. 

The statistical metrics applied in this study include the root mean 
square error (RMSE, Eq. (1)), mean bias (MB, Eq. (2)), and correlation 
coefficient (R, Eq. (3)). CMAQ statistical metrics are based on Boylan’s 
recommendations (Boylan and Russell, 2006) using the mean fractional 
bias (MFB, Eq. (4)) and the mean fractional error (MFE, Eq. (5)) as 

Table 8 
Statistical metrics for CMAQ model evaluation over Chengdu in July 2017.  

Station 
name 

NO2 in July SLAB UCM BEP BEM 

JQLH MFB − 5.12% 52.47% 84.11% 49.07% 
MFE 38.12% 34.19% 46.95% 33.76% 
R − 0.19 0.37 0.49 0.30 

SLD MFB − 108.59% − 42.17% − 6.54% − 38.52% 
MFE 60.70% 39.10% 40.59% 37.80% 
R − 0.06 0.33 0.42 0.45 

LYS MFB − 37.30% 66.52% 71.52% 69.08% 
MFE 38.37% 43.98% 46.30% 45.31% 
R 0.09 0.12 0.18 0.06 

Overall MFB − 50.34% 25.61% 49.70% 26.54% 
MFE 45.73% 39.09% 44.61% 38.96% 
R − 0.05 0.27 0.36 0.27 

Station 
name 

PM2.5 in July 
January 

SLAB UCM BEP BEM 

JQLH MFB − 38.81% 44.49% 77.92% 34.67% 
MFE 40.58% 39.86% 52.47% 36.74% 
R 0.16 0.41 0.29 0.33 

SLD MFB − 94.58% − 8.01% 25.32% − 8.47% 
MFE 49.86% 35.50 43.72% 34.31% 
R 0.01 0.48 0.46 0.31 

LYS MFB 64.03% 20.62% 30.26% 19.78% 
MFE 39.83% 36.08% 37.68% 38.48% 
R 0.11 0.01 0.19 0.14 

Overall MFB − 23.12% 19.03% 44.50% 15.33% 
MFE 43.42% 37.15% 44.62% 36.51% 
R 0.09 0.30 0.31 0.26  

H. Wang et al.                                                                                                                                                                                                                                   



Atmospheric Environment 267 (2021) 118775

7

indicators to evaluate the robustness of the air quality model. If the MFB 
value is between − 60% and 60% and the MFE is less than 75%, the 
model simulation result is considered to be within an acceptable range. 
The model performed well when meeting the criteria of an MFB value 
between − 30% and 30% and an MFE less than 50%. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(Mi − Oi)

2

√

Eq. 1  

MB=
1
n

∑n

i=1

⃒
⃒
⃒
⃒
⃒
Mi − Oi

⃒
⃒
⃒
⃒
⃒

Eq. 2 

Fig. 8. Spatial distribution of ground-level NO2 concentrations.  
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R=

∑n

i=1

(
Mi − Mi

)(

Oi − Oi

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Mi − Mi

)2 ∑n

i=1

(
Oi − Oi

)2
√ Eq. 3  

MFE =
2
n

∑
{
|Mi − Oi|

(Mi + Oi)

}

Eq. 4  

MFB=
2
n

∑
{
(Mi − Oi)

(Mi + Oi)

}

Eq. 5 

In the above formulas, n is the number of effective samples, and Oi 

and Mi denote the i-th observation value and the i-th simulated value, 
respectively. O and M represent the mean value of observations and 
simulated parameters, respectively. 

3. Evaluation of model performance 

3.1. Verification of meteorological conditions simulated by WRF 

Fig. 6 and Fig. 7 show the diurnal patterns of the 2-m temperature at 
each site in January and July, respectively. Compared with observa
tions, the UCM model tended to simulate a lower 2-m temperature than 
the SLAB model simulation of approximately − 2.0 ◦C during January. 
The BEP and BEM models calculated higher 2-m temperatures than the 

SLAB model simulation of approximately 0.7 ◦C during 00:00–15:00 and 
20:00–23:00 in January. The BEP and BEM models have a similar per
formance during 00:00–12:00 and 16:00–23:00, and the other times 
have a bias of − 0.5 ◦C in January. For July, all the models simulated 
higher 2-m temperatures than the observation data during 09:00–19:00. 
While the BEP and BEM models have lower 2-m temperature during 
00:00–08:00 and 20:00–23:00 with a bias of − 0.5 ◦C, the statistical 
metrics suggest that the BEP and BEM with MBs of 1.76 ◦C and 2.04 ◦C, 
respectively and this is because of the higher prediction of the BEP and 
BEM models during 08:00–20:00. Overall, although the BEP and BEM 
models have similar performances, the BEP model simulation is lower 
than the BEM models. 

Table 5 presents the statistical metrics of 2-m temperature under 
different urban canopy models. The SLAB model yields the best per
formance in January, with an MB value equal to 2.02 ◦C, while the UCM 
model performance is relatively weak in January, with an MB of 2.66 ◦C. 
Unlike wintertime, the UCM model performs well in the summer season 
with an MB of 1.73 ◦C. In contrast, the largest bias is found on the SLAB 
model with an MB value of 2.30 ◦C. While bias still existed among all 
models, the variations in observed temperature were well captured by 
all models with relatively low MB values, indicating the strong capa
bility of the WRF model in reproducing 2-m temperature in Chengdu 
city. 

Figs. S1–S8 show the verification of the 10-m wind fields at various 
sites in January and July. All model performances of the 10-m wind 

Fig. 9. Cross section of modelled NO2 in January; (a)–(d) are the results of the SLAB, UCM, BEP and BEM models, respectively. Between the blue dotted lines is the 
downtown Chengdu. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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speed with MB less than 2.0 m/s in both winter and summer. In July, the 
MB was higher than that in January, and the overestimation of wind 
speed existed among all models. Similar to January, the 10-m wind 
speeds calculated by the BEP and BEM models are lower than those of 
the SLAB model and correlate better with the observations. Table 6 
compares the statistical metrics of 10-m wind speed in various urban 
canopy models. Notably, MB values in the BEP model are comparatively 
low, with 1.00 m/s in January and 1.24 m/s in July, indicating that the 
BEP model presents the best model performance among the four models. 
Conversely, the model capabilities of the UCM and SLAB models were 
relatively poor in January (MB of 1.35 m/s) and July (MB of 1.6 m/s), 
respectively. Overall, the variations in meteorological conditions are 
well captured by the WRF simulations even though the model perfor
mance varies slightly among different urban canopy models. 

3.2. Verification of air pollutant levels simulated by CMAQ 

With the incorporation of the urban canopy model, the thermal and 
dynamic conditions in urban areas substantially changed and subse
quently affected air pollutant concentrations. We select NO2 and PM2.5 
as the criteria for air pollutants to further investigate the impact of the 
urban canopy on air quality modelling. Figs. S9–S12 depict the time 
series of NO2 and PM2.5 in January and July. Furthermore, the detailed 
statistical metrics for evaluating the CMAQ model performance in the 
winter and summer seasons are presented in Tables 7 and 8, 

respectively. 
As shown in Fig. S9, NO2 concentrations simulated under the SLAB 

model in urban areas (JQLH) and suburban areas (SLD) do not accu
rately capture the variability of NO2 concentrations in winter. Specif
ically, the SLAB model performance for urban areas better fit the 
observed NO2 levels, while the suburban areas do not reflect the real 
situation in terms of both trends and values with a bias of − 20 μg/m3. 
Meanwhile, the NO2 concentrations simulated by the UCM model in 
winter show significant overestimations at all three sites, particularly in 
urban and suburban areas. Furthermore, the performance in winter for 
NO2 concentrations is similar for the BEP and BEM models. Both urban 
and suburban areas can simulate realistic NO2 concentrations well in 
winter, while rural areas (LYS) are somewhat overestimated. 

As seen from Fig. S10, the SLAB model grossly underestimates PM2.5 
concentrations in urban and suburban areas in winter, while the PM2.5 
levels in rural areas are well represented. However, PM2.5 concentra
tions in the UCM model were significantly overestimated by a factor of 
more than 2. Both the BEP and BEM models show occasional over
estimations, and there are no obvious differences in modelled PM2.5 
concentrations between these models. 

Fig. S11 and Fig. S12 show that the SLAB model underestimates both 
NO2 and PM2.5 concentrations in July. The UCM model performance of 
NO2 and PM2.5 concentrations are better in suburban areas in summer 
and has an overestimate in both rural and urban areas in summer. The 
BEP model suffers from an overestimation of both NO2 and PM2.5 

Fig. 10. Cross section of modelled NO2 in July; (a)–(d) are the results of the SLAB, UCM, BEP and BEM models, respectively. Between the blue dotted lines is the 
downtown Chengdu. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 11. Spatial distribution of ground-level PM2.5 concentrations over Chengdu city in 2017.  
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concentrations in summer, particularly in urban and suburban areas, 
while it does not occur in the BEM model. 

Table 7 illustrates that the SLAB model calculated the weakest NO2 
and PM2.5 concentrations in winter, with MFBs (MFEs) of − 52.93% 
(48.22%) and − 102.82% (56.21%), respectively. The UCM model per
forms well in suburban areas for NO2 concentrations in winter with an 
MFB (MFE) of 26.18% (38.32%) and is worse in rural areas with an MFB 
(MFE) of 62.58% (42.39%). The BEP model and BEM model simulations 
of NO2 concentrations in winter perform better in urban and suburban 
areas but not in rural areas. For PM2.5 concentrations, the SLAB model in 
winter performs poorly in urban, suburban, and rural areas, with R 
values of 0.03, 0.05, and 0.33, respectively. However, the performance 
in winter for PM2.5 concentrations improved since we adopted the UCM, 
BEP, and BEM models with R values of 0.35, 0.31, and 0.32, 
respectively. 

Table 8 illustrates that the SLAB model grossly underestimates NO2 
concentrations and does not reflect the true situation in terms of trends 
in summer. The UCM model for PM2.5 concentrations performs very 
strongly in urban and suburban areas in summer with R values of 0.41 
and 0.48, respectively, while it performs weakly in rural areas, mainly 
because it does not reflect the real situation in terms of trends. The BEP 
and BEM models are similar in terms of trend performance for both NO2 
and PM2.5 concentrations, but there is a significant overestimate in the 
BEP model. 

In general, the various models behave differently at different times. 

The SLAB model underestimates pollutant concentrations in both winter 
and summer. The UCM model is not suitable for modelling pollutants in 
winter, but the prediction of pollution concentrations is better in sum
mer. The pollution concentrations calculated by the BEP model in winter 
are not significantly different from the prediction of the BEM model, but 
in summer, there is a significant overestimation of the BEP model. 

4. Results and discussion 

This section uses the results of the CMAQ model driven by different 
urban canopy models to examine the differences in the performance of 
NO2 and PM2.5 in different models in terms of spatial and vertical 
distributions. 

4.1. NO2 concentrations under different urban canopy models 

Fig. 8 presents the spatial distributions of NO2 in January and July 
2017. The NO2 concentrations simulated by the SLAB model are lower 
than those simulated by the other models in both January and July. In 
terms of spatial distribution, elevated NO2 levels are concentrated in 
downtown Chengdu and along the highway. In July, the urban region of 
Chengdu city maintained high levels of NO2 in the BEP model, while the 
NO2 concentrations simulated by the BEM model were relatively low in 
July. For the UCM model, there are NO2 hotspots over urban core re
gions in January, while this situation does not occur in July. 

Fig. 12. Cross section of modelled PM2.5 in January; (a)–(d) are the results of the SLAB, UCM, BEP and BEM models, respectively. Between the red dotted lines is the 
downtown Chengdu. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 9 and Fig. 10 depict the cross-section of modelled NO2 concen
trations by each of the urban canopy models within WRF over Chengdu. 
Note that the cross-section of modelled air pollutants started at 103.0◦E, 
30.72◦N and ended at 105.0◦E, 30.72◦N. The SLAB model predicted 
much lower pollutant concentrations than other urban canopy models in 
both January and July. Specifically, the maximum NO2 concentrations 
simulated by the SLAB model in the Chengdu metropolitan area are 28 
μg/m3 in January and 26 μg/m3 in July. In contrast, the urban region 
maintained a high level of NO2 in January in the UCM model with 
surface concentrations exceeding 80 μg/m3, while in July, the UCM 
model implied that NO2 was dispersed, with maximum concentrations of 
approximately 60 μg/m3. The modelled NO2 levels are similar in 
magnitude between the BEP and BEM models in January, while the BEP 
model predicts much higher NO2 concentrations in urban regions, sug
gesting that stagnant conditions over Chengdu city in summer may be 
well captured by the BEP model (Yang et al., 2020b). 

4.2. p.m.2.5 concentrations under different urban canopy models 

Fig. 11 presents the spatial distributions of the ground-level PM2.5 
concentrations in January and July 2017. Overall, the PM2.5 concen
trations in January were much higher than those in July, and the com
parison indicated that the simulated PM2.5 concentrations in the UCM, 
BEP, and BEM models were higher than those in the SLAB model. In 
January, little difference exists between the BEP and BEM models. 

However, there are relatively large differences in the BEP and BEM 
models in July. This result is mainly attributed to the impact of air 
conditioning systems in the BEM model on the meteorological condi
tions that cause the BEP model to predict PM2.5 hotspots over urban core 
regions, while elevated PM2.5 concentrations are not presented in the 
BEM model. The UCM model suggests that the urban region of Chengdu 
city maintained high levels of PM2.5 that were difficult to disperse, 
whereas this did not occur in July. This is due to the low elevation angle 
in winter when less solar radiation reaches the ground, and the shadow 
effect is evident. In summer, the influence of the shadow effect is less 
pronounced because more solar radiation reaches the ground. In addi
tion, the UCM model has the lowest sensible heat flux (SHX) of 35 W/m2 

over the core region of Chengdu, while the SHX values in the SLAB, BEP, 
and BEM models are 65 W/m2, 115 W/m2, and 115 W/m2 over the core 
region of Chengdu, respectively. In summer, the SLAB, UCM, BEP, and 
BEM models have sensible heat fluxes of 150 W/m2, 125 W/m2, 115 W/ 
m2, and 200 W/m2 over the core region of Chengdu. Due to the much 
lower difference in SHX between the UCM model and other models in 
summer than in winter. Thus, the PBLH of the UCM model is signifi
cantly lower in winter (as shown in Fig. S17 and Fig. S18). Eventually, 
the UCM model causes PM2.5 to have worse vertical mixing within the 
PBL in winter than in summer. 

Fig. 12 and Fig. 13 present the cross-sections of the simulated PM2.5 
concentrations from different models in January and July, respectively. 
The PM2.5 pollution in January is much more severe than that in July 

Fig. 13. Cross section of modelled PM2.5 in July; (a)–(d) are the results of the SLAB, UCM, BEP and BEM models, respectively. Between the red dotted lines is the 
downtown Chengdu. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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due to unfavourable meteorological conditions in wintertime (frequent 
stagnant conditions, persistent high relative humidity, poor ventilation, 
etc.) (Yang et al., 2020a; Wu et al., 2021). Moreover, it is worth noting 
that the PM2.5 levels in the UCM, BEP, and BEM models are higher than 
those in the SLAB model regardless of the season. In July, the urban 
region of Chengdu maintained high levels of PM2.5 of 150 μg/m3 in the 
BEP model, while the BEM model predicted moderate PM2.5 levels of 60 
μg/m3 over the urban core regions. In January, there are PM2.5 hotspots 
over the urban core region in the UCM model, while the UCM model has 
favourable meteorological conditions for pollution diffusion in July. 

4.3. Mechanistic exploration of varied model performance in urban 
canopy models 

The differences between the various urban canopy models identified 
in the previous sections can be summarized as follows: 1) the SLAB 
model produces much lower pollutant concentrations than the other 
models; 2) the UCM model predicts elevated levels of air pollutants over 
the urban core region of Chengdu city in the summer, while simulated 
air pollutant concentrations in winter are relatively low; 3) the urban 
region of Chengdu city maintains high levels of air pollutants in the BEP 
model in July, while the BEM model considers that there are no pollu
tion hotspots over the core region of Chengdu city. In this section, we 
further explore the mechanistic explanation of varied model perfor
mance in urban canopy models over Chengdu city. Note that the cross- 
section of modelled fields started at 103.0◦E, 30.72◦N and ended at 

105.0◦E, 30.72◦N. 
Fig. 14 and Fig. 15 present the horizontal fields of the 10-m wind 

speeds in January and July, respectively. The wind speed performance 
of the UCM model, the BEP model and the BEM model is less than that of 
the SLAB model on the urban surface in both January and July. This is 
because the UCM and BEP and BEM models take into account the three- 
dimensional structure of the city, which increases the surface roughness. 
Finally, the wind speed simulation results of these three models are 
smaller than those of the SLAB model. Due to the impacts of 10-m wind 
speeds, when the UCM, BEP, and BEM models simulate pollutants, the 
diffusion conditions are worse than those of the SLAB model. This ulti
mately leads to much lower pollutant concentrations near the ground in 
the SLAB model than those in other models. Despite the high PBLH of the 
SLAB model (Fig. S17 and Fig. S18), fewer pollutants are able to diffuse 
from the near surface to the upper layers, thus causing the SLAB model 
for pollution concentrations to differ significantly from other models in 
the vertical layer. 

Fig. 16 and Fig. 17 illustrate the vertical temperature fields in 
January and July, respectively. From Fig. 17, it can be seen that the 
temperature near the ground calculated by the BEP model in July was 
significantly lower than that calculated by the BEM model. This is 
because, in summer, the air-conditioning system of the BEM model 
transfers indoor heat to the outside, which causes the increase of SHX on 
the ground compared to other models and the increment can be as great 
as 120 W/m2 compared to BEP models which do not consider air con
ditioning systems (Fig. S16). This condition ultimately releases much 

Fig. 14. Wind fields over Chengdu city under different urban canopy models in January 2017.  
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heat in the urban area and further leads to an increase in the surface 
temperature over the urban region of Chengdu. Such an increase in 
temperature may perturb and even substantially enhance the horizontal 
turbulence effect. As shown in Fig. 15(c) and (d), the prediction of 10-m 
wind speeds in the BEM model is higher than that in the BEP model. In 
addition, the increase in PBLH is due to the increase in temperature. 
Fig. S18 shows that the average PBLH over time simulated in the BEP 
model over the core region of Chengdu is 800 m, while it is 1100 m in the 
BEM model. A higher PBLH is generally conducive to the dispersion of 
air pollutants and dilutes atmospheric composition into a deep PBL. 
Thus, the ventilation condition in the BEM model may be better than 
that in the BEP model. The BEP model and the BEM model have similar 
simulations of near-surface temperature in January. This is largely 
caused by the low utilization rate of air conditioning in winter; thus, the 
air conditioning system in the BEM model shows minor impacts on the 
SHX (Fig. S15) and the external temperature. 

The radiation budget in urban areas is modulated by the urban 
canopy environment, especially the effects of buildings within the city, 
namely, the shadow effect (SE) (Liao et al., 2014; Li et al., 2019). The SE 
is explained by low solar zenith angle in winter leading to less amount of 
solar radiation reaching the ground and subsequently result in less ra
diation shaded by the buildings while the high solar zenith angle in 
summer causing much solar radiation reaching the ground and a large 
portion of it blocked by buildings. The impacts of SE are the key reason 
for the UCM model. The low solar angle in winter means that less solar 

radiation reaches the ground and SE has a significant effect on tem
perature. Although the UCM model has AH, the corresponding effect is 
not sufficient to offset the SE. Meanwhile, the BEP and BEM models have 
higher surface albedo than the UCM model in both winter and summer 
seasons (Fig. S13 and Fig. S14), which can lead these to obtain stronger 
thermal inertia. Therefore, the BEP and BEM models will cool down 
slowly, and their AHs are sufficient to offset the SE. This phenomenon 
then results in the planetary boundary layer height (PBLH) simulated in 
the UCM model being lower than the BEP and BEM models in winter. In 
July, SE shows minor effects because of the high solar angle and intense 
radiation; thus, it does not drastically affect the modelled parameters in 
the UCM model. 

5. Conclusion 

In this study, the applicability of four urban canopy models incor
porated in the WRF model and the impacts of these canopy models on 
the meteorological phenomenon and air quality are assessed by using 
the WRF–CMAQ modelling system. We evaluated the model perfor
mance of the four models in winter and summer against observations 
and explored the reasons for the differences in the models in winter and 
summer. The results show that the SLAB model underestimates pollutant 
concentrations in both winter and summer with MFBs of − 50.34% and 
− 23.12%, respectively. This can be attributed to the SLAB model not 
reflecting the real city form. The UCM model yields good performance, 

Fig. 15. Wind fields over Chengdu city under different urban canopy models in July 2017.  

H. Wang et al.                                                                                                                                                                                                                                   



Atmospheric Environment 267 (2021) 118775

15

with MFBs (MFEs) of 25.61% (39.09%) and 19.03% (37.15%) in winter 
and summer, respectively. The BEP model is worse than the UCM model, 
with MFBs (MFEs) of 49.70% (44.61%) and 44.50% (44.62%) in winter 
and summer, respectively. Rather, the BEP model performs better than 
the UCM model in terms of a trend with R values of 0.36 and 0.31, 
respectively. The BEM models perform well in urban and suburban 
areas, with R values of 0.30 and 0.40 in winter and 0.33 and 0.31 in 
summer, respectively. All models do not perform well in rural areas. This 
can be attributed to allocation bias in the emission inventory and a lack 
of consideration of regional transport since the simulation domain only 
covered Chengdu city. 

The main differences in model results due to model performance in 
this study are as follows: 1) the SLAB model underestimates pollutant 
concentrations in both winter and summer; 2) the UCM model over
estimates pollutant concentrations in winter; and 3) the BEP model 
overestimates pollutant concentrations in summer. For the first case, the 
main reason is that the SLAB does not consider the urban canopy 
structure, resulting in lower surface roughness and less obstruction to 
wind speed, leading to overestimation in wind speed. Moreover, the 
SLAB model is better ventilated, as there is no canopy to shade the solar 
radiation, resulting in higher temperatures and higher PBLH in the SLAB 
model. In the second case, the shading effect is more pronounced in 
winter because the solar angle is low and less solar radiation reaches the 
ground. In contrast, the shading effect is not as pronounced in summer 
because the solar angle is high and most of the ground heat is provided 

by solar radiation in summer. The shading effect of the UCM model is, 
therefore, more pronounced in winter, resulting in lower surface tem
perature and decreased PBLH. The last case is mainly due to the higher 
thermal inertia of the BEP model than the single urban canopy model, 
which allows the urban surface to warm at a slow rate, in turn leading to 
low temperature, low PBLH, and poor ventilation. The BEM model ex
hibits better ventilation, as the air conditioning system takes a large 
amount of the indoor temperature outside, offsetting the temperature 
difference due to thermal inertia. 

This study highlights the impacts of urban canopy models in simu
lating meteorological conditions and air quality in the megacity 
Chengdu and suggests that employing suitable urban canopy models 
could improve the WRF-CMAQ model performance. While this study 
updated the land use and further classified the urban land use category 
based on updated MODIS data, the integrated urban canopy parameters 
are still limited. Moving forward, integrating much detailed urban land 
dataset such as World Urban Database and Access Portal Tools 
(WUDAPT) into WRF-CMAQ modelling system will assist in improving 
the understanding of urban meteorology-air quality studies. A deeper 
understanding of the urban canopy could not only optimize urban air 
quality predictions but also help to develop climate adoption policies. 
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